Available online at www.sciencedirect.com

Journal of the European Ceramic Society 23 (2003) 2565-2568

www.elsevier.com/locate/jeurceramsoc

BaO–TiO₂ microwave ceramics

Shunhua Wu*, Guoqing Wang, Yushuang Zhao, Hao Su

College of Electronics and Information Engineering, Tianjin University, Tianjin, PR China

Abstract

In this paper, the structure and dielectric properties of BaO–TiO₂ system ceramics were studied. By adding ZnO and Nb₂O₅ as sintering agents to the raw materials, the BaO–TiO₂ system ceramics were sintered at a temperature of 1260 °C for 2 h and have superior dielectric properties at 1 GHz: quality factor Q = 12,500, relative dielectric constant $\varepsilon_r \approx 37$, temperature coefficient of dielectric constant $\alpha_{\varepsilon} = 0 \pm 30$ ppm/°C. XRD pattern shows that the main crystal phase of the ceramics is Ba₂Ti₉O₂₀, accompanied by a small number of additional phases: BaTi₄O₉, Ba₄Ti₁₃Zn₇O₃₄, Ba₄Ti₁₃O₃₀ and Ti₂Nb₁₀O₂₉, etc. The initial Ba/Ti ratio has a great effect on the dielectric properties of the ceramics, which can be explained by the variance in the formation of phases due to different Ba/Ti ratios.

© 2003 Published by Elsevier Ltd.

Keywords: Dielectric properties; Microwave ceramics; Sintering; X-ray methods; BaO-TiO₂

1. Introduction

In the past decades, $Ba_2Ti_9O_{20}$ ceramics has received wide attention for its good microwave properties.¹ Jonker and Kwestroo² first reported the existence of $Ba_2Ti_9O_{20}$. O'Bryan et al.³ deeply studied the $Ba_2Ti_9O_{20}$ ceramics, and indicated that it could work as a kind of superior resonator material. It is well known that the formation of the single phase of $Ba_2Ti_9O_{20}$ is very difficult in that it can only be formed within a very narrow range of Ba/Ti ratio close to 2:9.⁴ Several reports have proved that the addition of dopants such as ZrO_2 , SnO_2 , $BaSnO_3$, etc. can make the formation of $Ba_2Ti_9O_{20}$

In the current work, ZnO and Nb₂O₅ were added to BaO–TiO₂ system, which lowered the sintering temperature to 1260 °C without deteriorating the dielectric properties. The dielectric properties as functions of initial Ba/Ti ratios were investigated. We have used this system ceramics to make multilayer ceramic capacitors (MLCCs) with excellent microwave characteristics.

2. Experimental procedure

The starting materials of BaCO₃, TiO₂, ZnO and Nb₂O₅ powders were weighed according to the composition of

0.62 Ba_xTi_yO_{x+2y}+0.33 ZnO+0.05 Nb₂O₅ (x=1-4, y=4-9). The purity of these powders and additives was higher than 99.9%. They were mixed and milled with zirconia balls in distilled water for 1.5 h, then dried and calcined in air at 1110 °C for 2 h. After that, the powders were milled again for 4.5 h and dried. Then they were sieved by No. 80 mesh and pressed isostatically into pellets at 75 MPa. The pellets were sintered in air at 1260 °C for 2 h at a heating rate of 4 °C/min. Finally they were covered with Ag electrodes for measurement.

The capacitance (*C*) and quality factor (*Q*) of the samples were measured at 1 GHz with a capacitance meter (Model 4291B, HP Co.). The temperature coefficient of dielectric constant α_{ε} was calculated using the equation $\alpha_{\varepsilon} = (C_{85}-C_{25})/(C_{25}\cdot60 \text{ °C})$, where C_{85} and C_{25} are the capacitances of the samples at 85 and 25 °C, respectively. The phases present were examined with an X-ray diffractometer (Model 2038X, Rigaku Co.) and the surface microstructure was observed with a Scanning Electronic Microscope (SEM).

3. Results and discussion

Figs. 1 and 2 are the SEM micrograph and XRD pattern of the sample (Ba/Ti = x/y = 2/9) sintered at 1260 °C for 2 h, respectively.

As shown in Fig. 2, the major crystal phase of the samples is $Ba_2Ti_9O_{20}$, accompanied by additional phases

^{*} Corresponding author.

BaTi₄O₉, Ba₃Ti₁₂Zn₇O₃₄, Ba₄Ti₁₃O₃₀ and Ti₂Nb₁₀O₂₉, etc. Ba₂Ti₉O₂₀ is triclinic with lattice parameters⁶ a = 0.7471 nm, b = 1.4081 nm, c = 1.4344 nm, $\alpha = 89.94^{\circ}$, $\beta = 79.43^{\circ}$, $\gamma = 84.45^{\circ}$. BaTi₄O₉ and Ba₄Ti₁₃O₃₀ are both orthorhombic with lattice parameters⁷ a = 1.453 nm, b = 0.379 nm, c = 0.629 nm, and a = 1.706 nm, b = 0.986nm, c = 1.405 nm, respectively.

3.1. Dielectric properties of single phases in the $BaO-TiO_2$ system ceramics

Several single-phase compounds detected via XRD were prepared respectively in the same process as mentioned in the experimental procedure according to the following equations:

 $2BaCO_3 + 9TiO_2 \rightarrow Ba_2Ti_9O_{20} + 2CO_2 \uparrow$ (1)

$$BaCO_3 + 4 TiO_2 \rightarrow BaTi_4O_9 + CO_2 \uparrow$$
(2)

$$4\text{BaCO}_3 + 13 \text{ TiO}_2 \rightarrow \text{Ba}_4\text{Ti}_{13}\text{O}_{30} + 4\text{CO}_2 \uparrow \qquad (3)$$

$$2\text{TiO}_2 + 5\text{Nb}_2\text{O}_5 \rightarrow \text{Ti}_2\text{Nb}_{10}\text{O}_{29} \tag{4}$$

Fig. 1. SEM micrograph of the surface of the sample (Ba/Ti = 2/9) sintered at 1260 °C for 2 h.

Fig. 2. XRD pattern of the sample (Ba/Ti=2/9) sintered at 1260 $^\circ\text{C}$ for 2 h.

When the compounds above were prepared, we used a small number of sintering agents.

Table 1 shows the dielectric properties of these compounds.

The number of these compounds in the $BaO-TiO_2$ system ceramics varies with Ba/Ti ratios, which can explain different properties of this system ceramics as functions of different Ba/Ti ratios.

3.2. The structure of $Ba_2Ti_9O_{20}$

The crystal structure of $Ba_2Ti_9O_{20}$ can be described as a hexagonal closest packing of oxygen and barium atoms.⁷ Titanium atoms distribute in the octahedral interstices of the closest packing to form TiO₆ octahedra.

Fig. 3 shows a projection of the unit cell along [010] in six layers of TiO₆ octahedra.⁷ Chains of four octahedra each at $y\approx 1/6[\text{Ti}(15)-\text{Ti}(18)]$ and $y\approx 1/3[\text{Ti}(7)-\text{Ti}(10)]$ are connected by common edges to form double rutiletype chains. These groups of eight octahedra each are again linked to each other by edge-sharing octahedra [Ti(11)-Ti(14)]. The same structural unit is formed by the TiO₆ octahedra at $y\approx 2/3$ and y=5/6. Groups of six edge-sharing octahedra at $y\approx 0[\text{Ti}(1)-\text{Ti}(3)]$ and $y\approx 1/2$ [Ti(4)-Ti(6)] connect these units via common corners.

3.3. The effects of Ba/Ti ratio on the dielectric properties of BaO–TiO₂ system ceramics

Fig. 4 indicates the relationships between the initial Ba/Ti ratio and ε_r , α_{ε} , in which we can see that with the increase of the Ba/Ti ratio, ε_r decreases gradually and α_{ε} shifts negatively. This tendency can be explained by the most well-known empirical equations for the calculation of ε_r and α_{ε} of a multi-phase compound.

$$\ln \varepsilon_r = \sum_i V_i \cdot \ln \varepsilon_{ri} \tag{5}$$

$$\alpha_{\varepsilon} = \sum_{i} V_{i} \alpha_{\varepsilon i} \tag{6}$$

where V_i , ε_{ri} and $\alpha_{\varepsilon i}$ are the volume fraction, the relative dielectric constant, and the temperature coefficient of dielectric constant of the *i*th phase, respectively.

As shown in Table 1 for Ba₂Ti₉O₂₀, $\varepsilon_r = 39$, $\alpha_{\varepsilon} = -29$ ppm/°C; for Ti₂Nb₁₀O₂₉, $\varepsilon_r = 180$, $\alpha_{\varepsilon} = +1100$ ppm/°C; for Ba₄Ti₁₃O₃₀, $\varepsilon_r = 41$, $\alpha_{\varepsilon} = -135$ ppm/°C.

Table 1Dielectric properties of the compounds

Samples	Sintering temperature (°C)	ε _r	$\alpha_{\varepsilon} \text{ (ppm/^{\circ}C)}$
Ba2Ti9O20	1280	39	-29
BaTi ₄ O ₉	1260	38	+18
Ba ₄ Ti ₁₃ O ₃₀	1260	41	-135
$Ti_2Nb_{10}O_{29}\\$	1300	180	+1100

Fig. 3. Six layers of crystal structure of Ba₂Ti₉O₂₀ stacked parallel to [010].

Fig. 4. ε_r and α_{ε} as functions of the Ba/Ti ratios.

When the Ba/Ti ratio is less than 2/9, more $Ti_2Nb_{10}O_{29}$ maybe exist in the multi-phase samples that were composed of Ba₂Ti₉O₂₀, BaTi₄O₉, Ba₃Ti₁₂Zn₇O₃₄, Ti₂Nb₁₀O₂₉ and Ba₄Ti₁₃O₃₀ etc. According to Eqs. (5) and (6), ε_r of the samples has a relative larger value and α_{ε} is positive because of the high ε_r (180) and the positive α_{ε} (+1100 ppm/°C) of Ti₂Nb₁₀O₂₉.

With the increase of Ba/Ti ratio, especially when the ratio exceeds 2/9, probably the amount of Ti₂Nb₁₀O₂₉

decreases, while the amount of Ba₄Ti₁₃O₃₀ ($\varepsilon_r = 41$, $\alpha_{\varepsilon} = -135 \text{ ppm/}^{\circ}\text{C}$) increases. Meanwhile, the formation of Ba₂Ti₉O₂₀ ($\varepsilon_r = 39$, $\alpha_{\varepsilon} = -29 \text{ ppm/}^{\circ}\text{C}$) was facilitated due to the rise of Ba/Ti ratio. So ε_r of the samples decreases, and α_{ε} shifts negatively, which can also be attributed to the two equations above.

4. Conclusions

- 1. BaO-TiO₂ system ceramics were prepared at a sintering temperature of 1260 °C for 2 h and have excellent microwave dielectric properties.
- 2. The initial Ba/Ti ratio in the raw materials has a great effect on the dielectric properties of the system ceramics. Lower Ba/Ti ratio increases ε_r and shifts α_{ε} positively, while higher Ba/Ti ratio has an opposite effect.

References

 Lin, W.-Y. and Speyer, R. F., Microwave properties of Ba₂Ti₉O₂₀ doped with zirconium and tin oxides. *J. Am. Ceram.* Soc., 1999, 82, 1207–1211.

- Jonker, G. H. and Kwestroo, W., The ternary systems BaO–TiO₂– SnO₂ and BaO–TiO₂–ZrO₂. J. Am Ceram. Soc., 1958, 41, 390–394.
- O'Bryan, H. M., A new BaO–TiO₂ compound with temperaturestable high permittivity and low microwave loss. *J. Am. Ceram. Soc.*, 1974, 57, 450–453.
- O' Bryan, H. M. and Thomson, J., Ba₂Ti₉O₂₀ phase equilibria. J. Am. Ceram. Soc., 1983, 66, 66–68.
- 5. Yoon, K. H., Kim, J. B. and Kim, W. S., Effect of BaSnO3 on the

microwave dielectric properties of Ba₂Ti₉O₂₀. J. Mater. Res., 1996, **11**, 1996–2001.

- Tillmanns, E., Hofmeister, W. and Baur, W. H., Crystal structure of the microwave resonator Ba₂Ti₉O₂₀. J. Am. Ceram. Soc., 1983, 66, 268–271.
- O'Bryan, H. M. and Thomson, J., Phase equilibria in the TiO₂rich region of the system BaO–TiO₂. J. Am. Ceram. Soc., 1974, 57, 522–526.